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The extension of aerosol direct fluorination techniques to the synthesis

of perfluoroketones from their hydrocarbon analogs is described. This

continuous flow direct fluorination process is fluorine efficient, causes

minimal fragmentation and produces high purity products. The purity of

F-3-pentanone, F-3-heptanone, and F-4-heptanone direct from the reactor were

71%, 59Z and 92% by weight respectively. Physical losses of feed hydro-

carbon, which can be recovered, reduce single pass yields to 13%, 13% and 23%

of total feed. Attempted fluorination of cyclopentanone produced F-pentanoyl

fluoride in 61% purity and single pass yield of 24%. No evidence for

F-cyclopentanone was found.
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REVISED MS #2-354C

Aerosol Direct Fluorination-Syntheses
of Perfluoroketones

James L. Adcock* and Mark L. Robin

Department of Chemistry, The University of
Tennessee, Knoxville, Tennessee 37996-1600

The aerosol direct fluorination method provides a continuous process for

the production of perfluorocarbons from hydrocarbons with efficient fluorine

utilization and minimal fragmentation.1 The application of this process to

1
alkanes, ethers, cyclo alkanes and ketals has been demonstrated. The exten-

sion of this novel process to ketones provides direct access to analog

perfluoroketones in modest yields, a feat not realized by other direct

fluorination methods to any significant degree, 2 although indirect procedures

3-8
have proven effective for selected cases.

Bigelow and Holub, in a comparison of direct (jet) fluorination and the

cobalt(III) fluoride (Fowler) process, reported that acetone, methyl

ethyl ketone and cyclopentanone could be fluorinated with elemental fluorine

to their perfluoro analogs, albeit in poor yields; the cobalt(III) fluoride

process, however, cleaved the ketones at a very early stage in the reaction.
2

Because oY the difficulty of producing perfluoroketones directly,

numerous indirect methods have been developed.3- 8 For example, the defic-

iency of the cobalt(III) fluoride process in the production of perfluoro-

ethers can be ameloriated if the ether is already fluorinated on one side.
4

The subsequent sulfuric acid hydrolysis of these halomethyl perfluoro-

cycloalkane ethers (prepared from methanol addition to perfluorocycloalkenes

followed by cobalt(III) fluoride fluorination) yielded perfluorocyclo-

4 4.
pentanone and perfluorocyclohexanone. A similar process, which uses

c dhld6ination followed by KF-tetramethylene sulfone metathesis instead of

cobalt(III) fluoride fluorination prior to hydrolysis has been reported by

Anello, et., al. 5 Another method for the production of perfluoroketones is

1



2

the decomposition over alumina of the corresponding perfluoroalkylene

epoxides prepared from the corresponding cyclic and acyclic alkenes. 6

Perhaps the most useful process on a research scale are the condensation of

methyl and ethyl perfluorocarboxylates with sodium,7 the related reaction of

perfluorocarboxylic acids with sodium alkoxide, 8 and the reactions of ethyl

perfluoroalkyl carboxylates with perfluoroalkyl grignard or lithium reagents
9

to produce the symmetrical bisperfluoroalkyl ketones and in the latter case

potentially the unsymmetrical ketones.
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Results and Discussion

The efficacy of the aerosol process for the direct fluorination of

ketones is somewhat surprising. LTG (Low-Temperature-Gradient) Fluorinations

have not successfully fluorinated ketones under the usual conditions. 10 The

aerosol process is very rich in fluoride ion, thus fluoride catalysed oxida-

tion of the ketone carbonyl group might be expected to produce fluoroxy

compounds.1 1 It might also be expected that the photochemical finishing

stage of the aerosol process would result in photolytic cleavage of the

ketone.12 In reality none of the above problems were manifested in the

results. In fact the high concentration of fluoride ion may be beneficial in

that the acidity of tMe medium due to endogeneous hydrogen fluoride is

reduced thus minimizing acid catalysed condensation reactions. 13

In each of the reactions the perfluoroketone was the major product

collected. Of the products collected F-3-pentanone, F-3-heptanone and

F-4-heptanone were 71%, 59% and 92% of the total by weight; although these

numbers are impressive, they obscure a troublesome problem with all of the

ketone reactions to date. The aerosol system is dependent on the generation

of a particulate aerosol which is ideally crystalline, monodisperse (uniform

size) and with little tendency to aggregate. In reality only a few compounds

produce near perfect aerosols exhibiting all of the previous properties.

Most compounds which produce excellent aerosols are highly symmetrical and

pack well in a crystal lattice. Examples are neopentane, adamantane, cyclo-

alkanes, cyclic ethers, and most highly branched, geometrically uniform mole-

cules. Normal alkanes and especially their functional derivatives deviate in

varying degrees from this ideal. If the conditions, considered ideal, are

met, percent yields based on throughput (amounts injected) and product

(collected) percent distributions will differ by only a few percent. As the



molecules deviate from this ideal shape, the percent yields based on

throughput begin to fall because of physical losses within the aerosol

generator and initial reaction stage (see Reference 1). These losses can be

significant and result in sometimes significant amounts of unfluorinated or

complex mixtures of generally less than trifluorinated products collected at

the close of the reactions when the system warms to ambient, or is opened for

cleaning between reaction runs.14 Although significant advances in

optimization have been made, this is as much art as science. If no

corrections or adjustments are made due to recovered unreacted or partially

reacted materials, the yield of F-3-pentanone, F-3-heptanone and

F-4-beptanone are 13%, 13% and 23% respectively. It should, however, be

emphasized at this point that in virtually all reactions, fragmentation

amounts to less than five percent of the total throughput, although in the

3-heptanone fluorination, F-n-butane was isolated in yields approaching that

of F-3-heptanone.

Although fragmentation is minimal, occasionally almost total cleavage

will occur in a reaction. An example of this is the attempted fluorination

of cyclopentanone. The major product collected (61% of the total) was

F-pentanoyl fluoride in a yield based on total throughput of 24%. The only

other product of significance was P-n-butane (11% of collected product) and

numerous very small peaks collectively identified as partly fluorinated acid

fluorides from their infrared spectra.

The quantities of materials run were small to achieve more nearly ideal

conditions. Throughputs of up to 10 millimoles per hour can be achieved with

most compounds on the present reactors of one-half inch cross section, these

throughputs usually produce somewhat lower yields and product purity although

larger amounts, up to ten grams of fluorocarbons, have been produced this

way.
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Although considerably more work is necessary, primarily in optimization

of aerosol generation before aerosol direct fluorination can be considered a

general route to perfluoroketones, clearly the progress so far indicates that

this novel direct fluorination process has overcome many obstacles to a

direct synthesis of perfluoroketones.
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EXPERIMENTAL

The basic aerosol fluorinator design and a basic description of the

process is presented elsewhere. ! Workup of products following removal of

hydrogen fluoride consisted of vacuum line fractionation; infrared assay of

fractions; gas chromatographic separation of components using either a 7

meter x 3/8" 13% Fluorosilicone QF-1 (Analabs) stationary phase on 60-80

mesh, acid washed, Chromosorb p conditioned at 225 0C (12 hrs) or a 4 meter x

3/8" 10% SE-52 phenyl-methyl silicone rubber on acid washed 60-80 mesh

Chromosorb p, conditioned at 250 0C (12 hrs). Following gas chromatographic

separation (Bendix Model 2300, subambient multi-controller) all products of

"significance" were collected, transferred to the vacuum line, assayed and

characterized by vapor phase infrared spectrophotometry, PE1330; electron

impact (70eV) and chemical ionization (CH4 plasma) mass spectrometry

(Hewlett-Packard GC/MS, 5710A GC, 5980 A MS, 5934A Computer); and H and 19F

nuclear magnetic resonance (JEOL FX90Q, omniprobe) in CDC1 3 with 1% CFC13

internal standard. The above characterizations (3 pages) are available as

Supplementary Material, ordering information is given on any current masthead

page. (TR-5 APPENDIX I)

Aerosol Fluorination of 3-Pentanone - Diethyl ketone (Chemical Samples

Co.) 99% was used as received. Its vapor pressure at O°C is such that a flow

of 70 cc/min helium through -50 mL of the material contained in a sparge tube

evaporator produces a throughput of 2 millimoles/hr. Details of the aerosol

fluorination parameters are given in Table 1. For a four hour, photochem-

ically finished run 0.38g of crude product was separated gas chromatograph-

ically on the fluorosilicone QF-1 column (-5*C/2 m; 1/m to 10°/1 m; 30°/m to

180°/5 m) producing 0.27g of F-3-pentanone (71%, Table 1), a 13% yield based

on theoretical throughput. If should be noted that significant quantities of

unfluorinated 3-pentanone were found inside the reactor upon warming.
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Aerosol Fluorination of 4-Heptanone - Di-n-propyl ketone (Aldrich) was

used as received. The vapor pressure at 23*C of 4-heptanone was such tuiat a

flow of 165 cc/m of helium through -50 mL of the material contained in a

sparge tube evaporator produces a throughput of 2 millimoles/hr. Details of

the aerosol fluorination parameters are given in Table 1. For a four hour,

photochemically finished run 0.734g of crude product was separated on the

FluorosLlicone QF-1 column (300/1 m; 20/m to 600/1 m; 500 /m to 1800/5 m)

producing 0.675g F-4-heptanone (92%) with a yield based on theoretical

throughput of 23%. Again unfluorinated 4-heptanone was found in the reactor

on warming.

Aerosol Fluorination of Cyclopentanone - Cyclopentanone (Aldri was

used as received. The vapor pressure of cyclopentanone at 23*C is that

a flow of 112 cc/m helium through 50 mL of the material contained

sparge tube evaporator produces a throughput of 2.1 millimoles per hour.

Details of the aerosol fluorination parameters are given in Table 1. For a 3

hour, photochemically finished reaction, 0.62g of crude product was separated

on the Fluorosilicone QF-1 column (100/1 m; 10/m to 300/1 m; 20*m to 1000/10

m) producing 0.378g of F-pentanoyl fluoride (61%) with a yield based on

theoretical throughput of 24%. Cyclopentanone was again found in the reactor

on warming.

Aerosol Fluorination of 3-Heptanone - 3-Heptanone (Aldrich) was used as

received. Its vapor pressure was too low to get an acceptable throughput by

evaporation at room temperature and a modified aerosol generator was adapted

to a flash evaporator fed by a syringe pump (SAGE Model 341a) driving a 5.000

mL. Precision Sampling Corp, "Pressure Lok" syringe. A pump speed

corresponding to 3.5 millimoles per hour was established and 2.95 mL (2.41g,

21.2 mmole) 3-Heptanone was delivered over a 6 hour period. Details of the
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aerosol fluorination parameters are given in Table 1. From the crude product

(1.65g) was isolated 0.98g (59%) pure F-3-heptanone (GLC Temperature Program

on the QF-l column: 250 /2min; 1.5*/min to 60*/1 min.; 50*/min to 1800/20

min.) corresponding to a yield of 13% based on total 3-heptanone injected.

Much of the 3-heptanone was recovered unchanged.
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Research Corporation, Cottrell Research Fund is also acknowledged.
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Supplementary Material, Page 1

TABLE 1

CHARACTERIZATION OF F-KETQNES
Infrared, Mass Spectra and 1F NMR

1-3-Pentanone:

Infrared (cm-1) 3620(w), 1780(m), 1320(s), 1230(vs), 1175(vs), 1110(s),

1025(m), 880(m), 830(m), 750(m), 710(s), 600(u).

Mass Spectra [m/e (int.) Formula]l:

CI (CHO): 267(1O0)CsFjpOH,M+H; 247(31)CSF90, (M-F); 147(31)C3F50;

119(14)C2F5; 69(4)CF3.

a 2
EI(7OeV): 14801) 1 CC2 F5 0; 147(40)C 3 F5 0; 131(1)C 3 F5 ;

128(l)C3F,0; 1i9(100)C2F1; 109(1)C 3F30; 101(1)3 CCd4;

100(12)C2 F4 ; 98(1)C3 F3 ; 81(1)C 2 F3 ; 78(1)C2 F20; 69(32)

C13; 50(2)CF2; 31(3)CF.

19 F NK CFC13 -0.0 ppm:

4'CF3 - -82.03 ppm(s)

J < I hz, Integration 3:2

OCF 2 - -121.38 ppm(s)

FE-4-Heptanone:

Infrared (c& 1 ): b 1785(m), 1395(m), 1240(s), 1200(m); 1160(a), 1140(m),

1080(m), 1015(m), 845(a), 780(w), 945(a), 925(s),

900(m).

Mass Spectra Im/e (int.) Formulal

CI(CH4): 367(39)C7F140H, Miii; 347(100)C7FI30, M-F.

EI(7OeV): 341(7)C7PI30, M-F; 197(15)C4F70; 169(1O0)C3F7;

119(15)C2F5; 100(16)C 2F4; 69(81)CF3.
191F NMR 0CFC13 - 0.0 ppm:

Integral

*CF3 -- 81.16 ppm (in) 3

*CF 2 - -126.31 ppm (an) 2

*CF2 - -118.66 ppm (an) 2

(a) See Ref. 11.
(b) A. L. Renne and Win. C. Francis, 3. Amr. Cbes. Sat., 1953, 79, 992-4.
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TABLE I (continued)

F-3-Heptanone:

Infrared (cm-1): 1785 (m), 1350(m), 1330(m), 1295(m), 1245(s), 1190(m),

1165 (a), 1140(m), 1110(w), 1050(w), 1020(w), 900(w),

840 (w) 805(w), 745(w), 720(w), 705(w).

Mass Spectra [m/e (int.) Formula]

CI (CH): 367(86)C 7F14 OH, M4H; 347(97)C 7F1 30, K-F; 297(5)C 6F1 10;

247(18)C5F90; 219(65)C4 F9; 197(8)C4F70; 169(8)C 3F7;

147(28)C 3 F50; 131(28)C 3 F5 ; 119(62)C 2F 5 ; 100(36)C 2F4 ;

97(12)C 2F30; 69(100)CF3 .

EI (70eV): 219(58)C4 F9; 147(26)C 3F50; 131(28)C 3F5; 119(100)C 2Fs;

100(18)C 2F4 ; 69(72)CF3.

1 9 F t LCFC13 - 0.0 ppm (int) CF3-CF2 A-CF 2CF2-CF 2-CF 3

a b c d e f

a - -81.99 ppm (3) *c= -118.01 ppm (2)
b - -121.67 (2) #d - -124.79 (2)

fe - -126.32 (2)

coupling are small and +f - -79.82 (3)
multiplets are complex.
Assignments comparison to
F-3-pentanone and F-4-Heptanone

-J
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TABLE 2

CHARACTERIZATION OF F-PENTANOYL FLUORIDE

Infrared (cm-): 1880(s), 1350(w), 1275(m), 1265(s), 1240(vs), 1215(s),

1140(s), 1110(s), 1020(s), 945(m), 930(m), 905(m),

875(m), 840(w), 825(w), 815(m), 740(m), 710(m).

Mass Spectra [m/e (int.) Formula]:

CI (CH): 418 (10.7) C1 0 F 1 4 02 ; 281 (10.7) C5 F9 0 3H2 ; 266 (0.7)

CsF1 00, M; 247 (6.5) C5F90, M-F; 220 (4.3) 13 CC3F9 , 219

(100) CF , M-CFO; 197 (7.2) C4F 70, M-CF 3; 131 (12.5)

C3FS; 103 (5.7) ???; 101 (9.2) C2F4 H; 100 (3.8) C2F4 ;

69 (2.7) CF3.

El (70eV): 219 (3.8) C4 Fq; 169 (19) C3F7; 131 (16.7) C3F5; 119

(21.6) C2 F5 ; 100 (10) C2 F4; 78 (5.7) C2F20; 69 (100)

ar_; 47 (7.3) CFO.

19 F R-a 0.0 ppm CF3-CF2-CF2-CF2-C 
O

CFC1 3  a b c d Fe

(Mult.) [Integ.]

#a - -81.59 ppm (t-t) [31 Jac - 9.76 hz

Jab - 2.14 hz (cont 2.44/1.83 hz)

#b - -126.47 ppm (m) [2]

Jbc - 3.05 hz

*c 
= -123.98 ppm (W) [21

Jbd - 9.76 hz

Jad - 1.83 hz

#d = -118.32 ppm (-q.q) [21

Jce+Jde - 7.33 hz

#e - +24.85 ppm (p) [1]

(a) V. V. Berenblit, V. A. Nikitin, V. P. Sass, L. N. Senyushov, Yu. K. Starobin
and Yu. V. Tsyganov, Z. Organicheskoi Khimii, 1979, 15, pp 284-294 (in
Translation); J. W. Easley and L. Phillips, "Progress in Nuclear Magnetic
Resonance Spectroscopy," Vol. 5, Pergamon Press, Oxford, 1971, p. 123.

... .. . ... " No, J



APPENDIX 11

ERRATUM

To Technical Report 4



Erratum to Technical Report 4

Explanation - The characterization of products produced by the Aerosol direct

fluorination of tertiary butyl chloride, 2-chloro-2-methylpropane, is not as

previously stated to be perfluoro-t-butyl chloride but is in fact perfluoro-

isobutyl chloride produced by 1,2-chloride shift and is the sole unfragmented

product. The following corrections to the text reflect this reevaluation:

Page Line Delete Insert

24 -2 F-tert-butyl F-iso-butyl

25 1 F-t-butyl F-iso-butyl

35 -1 F-tert-butyl F-iso-butyl

48 -8 F-tert-butyl F-iso-butyl

51 Insert Replacement Page 51 (Char. Table 10 cont.)

57 4 Table II Table 11

pp 58-62 Insert Attached Table 11 and renumbered pp 58-60 as
63-65.
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TABLE 10 (CONTINUED)
1 9 F N=R: 0 0 ppm) CF3CF2-CF2-CF2Cl

CFCb c d

a = -81.7 ppm (t.t)a Jac - 9.89 hi.

Jab - Jad "1.1 hz

b  
-126.1 ppm (t.m)

c = -121.6 ppm (q.m) Jcd - 1.46 hz

- -68.9 ppm (t.q) Jbd - 12.64 hz
d

F-iso-Butyl Chloride:

Infrared (cm- ): 1300(sh), 1280(vs), 1195(s), 1162(s), 1070(w), 1042(m),

988(s), 916(m), 863(s), 751(m), 722(ms).

Mass Spectra Wr/e (int.) Formulal:

CI (CHO: 237 (24.2) C4F8
37C1; 235 (77.1) C4F8

3 5Cl; 220 (4.3)

13C 12C 3F9; 219 (100) CSFI; 197 (23.8) C4F6
35C1; 131

(5.1) C3F5; 87 (3.7) CF2
37C1; 85 (11.8) CF2

35C1.

El (70eV): 235 (1.3) CgF8
3 5 C1; 219 (37.0) C4F9; 151 (3.8) C3F6;

149 (1.3) C3F4 
3 7 Cl; 147 (4.6) C3F8

35C1; 131 (15.9)

C3F5; 100 (11.6) C2F4 ; 87 (21.6) CF2
37C1; 85 (68.0)

CF2
3 5C1; 69 (100) CF5 .

1 NM , = 0 ppm) [Integ.) (CF3) 2 (CF2 Cl)CF
CC3a b c

*CF 3  - -73.05 ppm (t-d) [141

*CF 2Cl - -61.97 ppm (heptod) [51 Jab - 10.74 hz.

#CF - -178.53 ppm (hept*t) 131 Jac " lbc 5.88 hz

Perfluorocyclopentane:

Infrared: Identical with Literature*

Mass Spectra: [m/e (tnt.) Formula]:

CI (CHO: 131 (100) C3Fs, 121 (16) C2H2F5; 103 (14) C2H3F,; 100

(21) C2F,; 81 (69) C2F3; 69 (29) CF3.

*D. C. Welblen in "FLUORINE CREMISTRY," Vol II, Ch. 7, p 471, Fig 3, J. H.

Simons, Ed., Academic Press, Inc., New York, N.Y., 1954
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TABLE I1I

F-Isopentane:

Infrared (cm )a 1260(sh), 1255(vs), 1225(vs), 1147(mw), 1090(w),

1060(vw), 980(m), 930(w), 888(m), 720(m), 635(vw),

610(vw), 525(w).

mIass Spectra jm/e (mt.) Formula]:

CI (CHOi.: 182 (100.0) C4F 7H; 136 (36.5) C5F4; 132 (51.6)

C3F5H; 69 (50.3) CF3.

El (70eV): 269 (5.5) C0F11, M-F; 219 (1.6) C4Fq; 200 (2.5)

Ci.F8; 181 (11.8) C4F 7; 150 (4.5; C3F6; 131 (21.6)

C3F5; 119 (34.7) C2F5; 100 (6.6) C2F4; 69 (100) CF3.

1 NMR (*CFCl3  0OPPM, CDCl3)? CF-CF2-CF(CF 3)2
a b c d

a- -81.2 ppm (undecet) [31 Jac -1.47 Jab -?

Od - -72.92 ppm (-nonet-d) [61 Jad =5.86Hz Jcd - 1.47 Hz

*b - -119.9 ppm (heptet-d) [21 Jbd - 10.99 liz

Oc--187.4 ppm (mult) [1 Jbc - 2.93 liz

(a) Sadtler, Infrared # 41640P(1967).
(b) R. D. Dresdner, F. N. Thimoe and J. A. Young, J. Amer. Chem. Soc., 1960,

82, 5831.
(c) Sme uncertainties exist in coupling constants because 1.47 x 2 2.94,

2.93 x 2 - 5.86.
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TABLE 11 (CONTINUED)(2)

2-Methyl-3,3-difluorobutane:

Infrared (cm-1): 2980(s), 2900(m), 1480(m), 1390(s), 1360(w), 1260(s)

1200(sh,s), 1160(vw), 1110(s), 1050(m), 920(s), 880(w),

730(w).

Mass Spectra [m/e (int.) Formula]:

CI (CH): 125 (0.6) C5 HIOF 2 CH5+, 107 (0.7) C5H9F2, 89 (100.0)

CSH1pF, 69 (2.1) C5 H9

El (70eV): 93 (13.5) C4H7F2; 78 (2.0) C3H4F2; 77 (7.6) C3H 3F2;

69 (18.4) C5H9; 65 (69.7) C2F2H3; 47 (8.2) C2H4F,

43 (100) C3H7.

19F + H NRd,e CH3-CF2-CH(CH 3)2
a b c d

6 - 1.51 ppm (t) Jab - 18.8 hz

6c - 1.5-2.15 ppm(mult)

6 d - 1.0 ppm (d) Jcd = 6.83 hz

*b - -97.96 ppm (g.d) Jab = 18.9 hz, Jbc 12.81 hz

d. *CFC13=0O.ppm; 1.0% CFC13/99% CDC13; 6CHC13-7.25ppm.

e. V. I. Golikov, A. M. Aleksandrov, L. A. Alekseeva, and L. H. Yagupol'skii,

Zhurnal Organicheskoi Khimii, 1974, 10, 279-99 (In Translation UDC

547.412.22+463.4).
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TABLE 11 (CONTINUED)(3)

2-Fluoro-2-Methyl-3,3-difluorobutane:

IR (cm-l): 3000(m), 2980(w), 1880(vw), 1485(w), 1390(m), 1260(m),

1170(vs), 1100(w), 1030(w), 940(m), 850(w), 740(w).

Mass Spectra [m/e (int.) Formula]:

CI (CH): 143 (10.5) C5HgF3 + CH5+; 125 (17.0) C5HgF3; 107 (100)

C5HqF2; 89 (24.6) C5HIOF; 87 (13.7) C5H8F.

El (70eV): 111 (3.6) C4H6F3, M-CH 3; 95 (8.3) C4H9F2; 93 (16.2) C4H7F2;

69 (15.3) C5H9 or CF3; 65 (51.9) C2H3F2; 61 (100) C3HGF;

47 (15.6) C2 H4 F; 43 (17.5) C3H7 or C2F; 41 (19.2) C3H5.

19F and 1H NMRd CH3-CF2-CF(CH 3)2
a b c d

Sa - 1.65 ppm (t-d) Jab - 18.05 hz ( 1H), Jac = 1.95 hz

6d - 1.737 ppm (d-t) Jcd = 21.73 hz (1H), Jbc - 1.22 hz

6b - -105.70 ppm (q) Jab - 18.3 hz (19F)

c - -154.21 ppm (heptet) Jcd = 21.36 hz (19F)

d. kCFC1 3-O.Oppm; 1.0% CFCl3, 99% CDC13; 6CHC13-7.25ppm.
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TABLE 11 (CONTINUED)(4)

1-Fluoro-2-Methyl-3,3-difluorobutane:

IR (cm- 1 ): 2990(m), 2940(sh), 1750(w), 1470(m), 1400(s), 1300(sh,m),

1250(s), 1215(s), 1170(s), 1110(vs), 1040(s), 990(m),

930(s), 870(sh,m), 740(w).

Mass Spectra [m/e (int.) Formula]:

Cl (CH): 143 (12.9) C5 HgF 3 + CH5+; 125 (60.4) C5H8 F 3; 123 (19.3)

C5 H6F 3; 107 (100) C5 HqF 2 ; 89 (54.6) C5HioF; 87 (63.1) C5 H8F.

El (70eV): 93 (10.4) C4H7 F 2; 78 (25.6) C 3H4F2 ; 77 (23.2) C 3H 3F2 ; 69

(86.4) C5 H9 ; 65 (100) C 2H 3F 2; 61 (18.4) C 3H 6F.

19F and 1H NMRd  CH3-CF2-CH(CH 3 )(CH2 F)

a b c d e f

6 a  1.60 ppm (t) Jab = 19.05 hz,

6 c = 1.5-2.0 ppm (broad multiplet)

6d = 1.10 ppm (d) Jde = 6.83 hz,

6e  4.5 ppm (d-m) Jef - 47.37 hz (1H)

b -95.5 ppm (m)

f -226.77 ppm (t-d) Jef 47.3 hz ( 19F), Jef 21.37 ha
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2,3-Difluoro-2-methylbutane:

Infrared (cm-1 ): 3000(s), 2950(m), 1465(m), 1385(s), 1170(s), 1120(s),

1085(s), 960(m), 865(m), 740(w).

Mass Spectra [m/e (int.) Formula]:

CI (CH4 ): 107 (2.1) C5HqF 2 ; 89 (100) C5HI0F); 69 (9.6) C5H9; 61 (1.7)

C3H6 F.

El (70eV): 93 (13.0) C4H 7F 2; 79 (25.6) C 3H 5F 2; 61 (100) C 3H6F;

60 (17.7) C3H 5F; 47 (14.4) C 2H 4F.

19F and IH NMRde CH3CHFCF(CH3 )2

a bc d e

Sa = 1.32 (d-d-d) Jab = 6.6 hz

6b = 4.47 (d.q-d) Jac = 23.2 hz

6e = 1.34 (d.d) Jad - 1.0 hz

c -151.60 (d.d.hept.) Jbc = 47.6 hz

d = -184.32 (m-d.q.d) Jbd = 12.7 hz

Jcd - 9.8 hz

Jce = 2.0 hz

Jde = 21.5 hz

d. *CFC1 3 - 0.0 ppm; 1.0% CFC1 3/99% CDC1 3 ; 6CHC13 -= 7.25 ppm.

e. W. J. Middleton, J. Org. Chem., 1975, 40, 574-8; c - -152.0 and d =

-185.5 ppm.
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